By Topic

Footprint area sampled texturing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baoquan Chen ; Dept. of Comput. Sci. & Eng., Minnesota Univ., Minneapolis, MN, USA ; Dachille, F. ; Kaufman, A.E.

We study texture projection based on a four region subdivision: magnification, minification, and two mixed regions. We propose improved versions of existing techniques by providing exact filtering methods which reduce both aliasing and overblurring, especially in the mixed regions. We further present a novel texture mapping algorithm called FAST (footprint area sampled texturing), which not only delivers high quality, but also is efficient. By utilizing coherence between neighboring pixels, performing prefiltering, and applying an area sampling scheme, we guarantee a minimum number of samples sufficient for effective antialiasing. Unlike existing methods (e.g., MlP-map, Feline), our method adapts the sampling rate in each chosen MlP-map level separately to avoid undersampling in the lower level l for effective antialiasing and to avoid oversampling in the higher level l+1 for efficiency. Our method has been shown to deliver superior image quality to Feline and other methods while retaining the same efficiency. We also provide implementation trade offs to apply a variable degree of accuracy versus speed.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:10 ,  Issue: 2 )