By Topic

Multilevel representation and transmission of real objects with progressive octree particles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. Yemez ; Comput. Dept., Koc Univ., Istanbul, Turkey ; F. Schmitt

We present a multilevel representation scheme adapted to storage, progressive transmission, and rendering of dense data sampled on the surface of real objects. Geometry and object attributes, such as color and normal, are encoded in terms of surface particles associated to a hierarchical space partitioning based on an octree. Appropriate ordering of surface particles results in a compact multilevel representation without increasing the size of the uniresolution model corresponding to the highest level of detail. This compact representation can progressively be decoded by the viewer and transformed by a fast direct triangulation technique into a sequence of triangle meshes with increasing levels of detail. The representation requires approximately 5 bits per particle (2.5 bits per triangle) to encode the basic geometrical structure. The vertex positions can then be refined by means of additional precision bits, resulting in 5 to 9 bits per triangle for representing a 12-bit quantized geometry. The proposed representation scheme is demonstrated with the surface data of various real objects.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:9 ,  Issue: 4 )