Cart (Loading....) | Create Account
Close category search window
 

Semantic representation and correspondence for state-based motion transition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ashraf, G. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Kok Cheong Wong

Consistent transition algorithms preserve salient source motion features by establishing feature-based correspondence between motions and accordingly warping them before interpolation. These processes are commonly dubbed as preprocessing in motion transition literature. Current transition methods suffer from a lack of economical and generic preprocessing algorithms. Classical computer vision methods for human motion classification and correspondence are too computationally intensive for computer animation. The paper proposes an analytical framework that combines low-level kinematics analysis and high-level knowledge-based analysis to create states that provide coherent snapshots of body-parts active during the motion. These states are then corresponded via a globally optimal search tree algorithm. The framework proposed here is intuitive, controllable, and delivers results in near realtime. The validity and performance of the proposed system are tangibly proven with extensive experiments.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:9 ,  Issue: 4 )

Date of Publication:

Oct.-Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.