By Topic

A cognitive pyramid for contextual classification of remote sensing images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Binaghi, E. ; Dept. of Inf. & Commun. Sci., Univ. of Insubria, Varese, Italy ; Gallo, I. ; Pepe, M.

Many cases of remote sensing classification present complicated patterns that cannot be identified on the basis of spectral data alone, but require contextual methods that base class discrimination on the spatial relationships between the individual pixel and local and global configurations of neighboring pixels. However, the use of contextual classification is still limited by critical issues, such as complexity and problem dependency. We propose here a contextual classification strategy for object recognition in remote sensing images in an attempt to solve recognition tasks operatively. The salient characteristics of the strategy are the definition of a multiresolution feature extraction procedure exploiting human perception and the use of soft neural classification based on the multilayer perceptron model. Three experiments were conducted to evaluate the performance of the methodology, one in an easily controlled domain using synthetic images, the other two in real domains involving builtup pattern recognition in panchromatic aerial photographs and high-resolution satellite images.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 12 )