By Topic

Soil moisture retrieval using the passive/active L- and S-band radar/radiometer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. D. Bolten ; Dept. of Geol. Sci., Univ. of South Carolina, Columbia, SC, USA ; V. Lakshmi ; E. G. Njoku

In the present study, remote sensing of soil moisture is carried out using the Passive and Active L- and S-band airborne sensor (PALS). The data in this paper were taken from five days of overflights near Chickasha, OK during the 1999 Southern Great Plains (SGP99) experiment. Presently, we analyze the collected data to understand the relationships between the observed signals (radiometer brightness temperature and radar backscatter) and surface parameters (surface soil moisture, temperature, vegetation water content, and roughness). In addition, a radiative transfer model and two radar backscatter models are used to simulate the PALS observations. An integration of observations, regression retrievals, and forward modeling is used to derive the best estimates of soil moisture under varying surface conditions.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:41 ,  Issue: 12 )