Cart (Loading....) | Create Account
Close category search window
 

Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Caorsi, S. ; Dept. of Electron., Univ. of Pavia, Italy ; Massa, A. ; Pastorino, M. ; Randazzo, A.

Phaseless data are used to evaluate the application of an electromagnetic inverse-scattering-based procedure for the detection of cylindrical inhomogeneities, which are schematized as multilayer infinite dielectric cylinders with elliptic cross sections. The electromagnetic inverse problem is recast as a global optimization problem and iteratively solved by an efficient memetic algorithm, which combines deterministic and stochastic concepts. Moreover, a recursive analytical procedure is used for the forward-scattering computation. The possibility of localizing and reconstructing the scatterers by using phaseless input data, which would greatly simplify the design of the imaging apparatus, is evaluated both with reference to synthetically produced data and by means of experimental data obtained by a microwave tomograph.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:41 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.