By Topic

Separation of latex spheres using dielectrophoresis and fluid flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Malnar ; Brunel Univ., Uxbridge, UK ; B. Malyan ; W. Balachandran ; F. Cecelja

The authors present a method for separation of two latex spheres populations using dielectrophoresis (DEP) and the fluid drag force. Microelectrodes of a suitable layout are used to trap one population of spheres, while the other one is dragged away from the electrodes by the generated fluid flow. The finite difference method is implemented in C++ to calculate the potential distribution by solving Laplace's equation. From the potential distribution, the DEP force on particles is calculated. The drag force on particles due to the liquid motion is calculated from the observed fluid velocity. The experimental results are shown to be in good agreement with the numerical solution.

Published in:

IEE Proceedings - Nanobiotechnology  (Volume:150 ,  Issue: 2 )