By Topic

Dielectrophoretic manipulation of surface-bound DNA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Germishuizen, W.A. ; Dept. of Chem. Eng., Univ. of Cambridge, UK ; Walti, C. ; Tosch, P. ; Wirtz, R.
more authors

Dielectrophoretic manipulation enables the positioning and orientation of DNA molecules for nanometer-scale applications. However, the dependence of the dielectrophoretic force and torque on the electric field magnitude and frequency has to be well characterised to realise fully the potential of this technique. DNA in solution is attracted to the strongest electric field gradient (i.e. the electrode edge) as a result of the dielectrophoretic force, while the dielectrophoretic torque aligns the DNA with its longest axis parallel to the electric field. In this work, the authors attached λ-DNA fragments (48 and 25 kilobases) to an array of gold microelectrodes via a terminal thiol bond and characterised the orientation and elongation as a function of electric field magnitude (0.1-0.8 MV/m) and frequency (0.08-1.1 MHz). Maximum elongation was observed between 200 and 500 kHz for the attached DNA. Dielectrophoresis is limited by thermal randomisation at electric fields below 0.1 MV/m and by electrothermal effects above 0.7 MV/m. The authors conclude that dielectrophoresis can be used to manipulate surface-immobilised DNA reproducibly.

Published in:

Nanobiotechnology, IEE Proceedings -  (Volume:150 ,  Issue: 2 )