By Topic

Dedicated temperature sensing with c-axis oriented single-crystal ruby (Cr3+:Al2O3) fibers: temperature and strain dependences of R-line fluorescence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seat, H.C. ; Lab. d''Electronique, ENSEEIHT-LEN7, Toulouse, France ; Sharp, J.H.

Single-crystal fibers of ruby (Cr3+:Al2O3) with approximately 0.1 wt.% Cr3+ have been produced by the laser heated pedestal growth (LHPG) technique. The fluorescence emissions of the R1 and R2 lines were studied as functions of temperature and strain. Fluorescence decay lifetime measurements indicate that these fibers may be suitable for thermometric applications up to 973 K while strain measurements show only a very weak dependence. Similarly, characterization of the R-line shifts also show a weak strain sensitivity and an appreciably larger change with temperature. One fiber sample has been tested to destruction to demonstrate this weak strain dependence. Single-crystal ruby fibers are, thus, found to be potential candidates for dedicated temperature sensing from room temperature to ∼923 K.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:53 ,  Issue: 1 )