Cart (Loading....) | Create Account
Close category search window

Mini-max integral sliding-mode control for multimodel linear uncertain systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Poznyak, A. ; Departamento de Control Automatico, CINVESTAV-IPN, Mexico City, Mexico ; Fridman, L. ; Bejarano, F.J.

An original linear time-varying system with matched and unmatched disturbances and uncertainties is replaced by a finite set of dynamic models such that each one describes a particular uncertain case including exact realizations of possible dynamic equations as well as external unmatched bounded disturbances. Such a tradeoff between an original uncertain linear time varying dynamic system and a corresponding higher order multimodel system containing only matched uncertainties leads to a linear multi-model system with known unmatched bounded disturbances and unknown matched disturbances as well. Each model from a given finite set is characterized by a quadratic performance index. The developed minimax integral sliding mode control strategy gives an optimal minimax linear quadratic (LQ)-control with additional integral sliding mode term. The design of this controller is reduced to a solution of an equivalent mini-max LQ problem that corresponds to the weighted performance indices with weights from a finite dimensional simplex. The additional integral sliding mode controller part completely dismisses the influence of matched uncertainties from the initial time instant. Two numerical examples illustrate this study.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.