By Topic

On convergence rate of projection neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Youshen Xia ; Dept. of Appl. Math., Nanjing Univ. of Posts & Telecommun., China ; Gang Feng

This note presents an analysis of the convergence rate for a projection neural network with application to constrained optimization and related problems. It is shown that the state trajectory of the projection neural network is exponentially convergent to its equilibrium point if the Jacobian matrix of the nonlinear mapping is positive definite, while the convergence rate is proportional to a design parameter if the Jacobian matrix is only positive semidefinite. Moreover, the convergence time is guaranteed to be finite if the design parameter is chosen to be sufficiently large. Furthermore, if a diagonal block of the Jacobian matrix is positive definite, then the corresponding partial state trajectory of the projection neural network is also exponentially convergent. Three optimization examples are used to show the convergence performance of the projection neural network.

Published in:

IEEE Transactions on Automatic Control  (Volume:49 ,  Issue: 1 )