Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Optimal control of switched systems based on parameterization of the switching instants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xuping Xu ; Dept. of Electr. & Comput. Eng., Pennsylvania State Univ., Erie, PA, USA ; Antsaklis, P.J.

This paper presents a new approach for solving optimal control problems for switched systems. We focus on problems in which a prespecified sequence of active subsystems is given. For such problems, we need to seek both the optimal switching instants and the optimal continuous inputs. In order to search for the optimal switching instants, the derivatives of the optimal cost with respect to the switching instants need to be known. The most important contribution of the paper is a method which first transcribes an optimal control problem into an equivalent problem parameterized by the switching instants and then obtains the values of the derivatives based on the solution of a two point boundary value differential algebraic equation formed by the state, costate, stationarity equations, the boundary and continuity conditions, along with their differentiations. This method is applied to general switched linear quadratic problems and an efficient method based on the solution of an initial value ordinary differential equation is developed. An extension of the method is also applied to problems with internally forced switching. Examples are shown to illustrate the results in the paper.

Published in:

Automatic Control, IEEE Transactions on  (Volume:49 ,  Issue: 1 )