Cart (Loading....) | Create Account
Close category search window
 

Extended latent class models for collaborative recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kwok-Wai Cheung ; Dept. of Comput. Sci., Hong Kong Baptist Univ., China ; Kwok-Ching Tsui ; Jiming Liu

With the advent of the World Wide Web, providing just-in-time personalized product recommendations to customers now becomes possible. Collaborative recommender systems utilize correlation between customer preference ratings to identify "like-minded" customers and predict their product preference. One factor determining the success of the recommender systems is the prediction accuracy, which in many cases is limited by lacking adequate ratings (the sparsity problem). Recently, the use of latent class model (LCM) has been proposed to alleviate this problem. In this paper, we first study how the LCM can be extended to handle customers and products outside the training set. In addition, we propose the use of a pair of LCMs (called dual latent class model-DLCM), instead of a single LCM, to model customers' likes and dislikes separately for enhancing the prediction accuracy. Experimental results based on the EachMovie dataset show that DLCM outperforms both LCM and the conventional correlation-based method when the available ratings are sparse.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:34 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.