Cart (Loading....) | Create Account
Close category search window
 

Joint scheduling and power control for wireless ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
ElBatt, T. ; HRL Labs., Malibu, CA, USA ; Ephremides, Anthony

In this paper, we introduce a cross-layer design framework to the multiple access problem in contention-based wireless ad hoc networks. The motivation for this study is twofold, limiting multiuser interference to increase single-hop throughput and reducing power consumption to prolong battery life. We focus on next neighbor transmissions where nodes are required to send information packets to their respective receivers subject to a constraint on the signal-to-interference-and-noise ratio. The multiple access problem is solved via two alternating phases, namely scheduling and power control. The scheduling algorithm is essential to coordinate the transmissions of independent users in order to eliminate strong levels of interference (e.g., self-interference) that cannot be overcome by power control. On the other hand, power control is executed in a distributed fashion to determine the admissible power vector, if one exists, that can be used by the scheduled users to satisfy their single-hop transmission requirements. This is done for two types of networks, namely time-division multiple-access (TDMA) and TDMA/code-division multiple-access wireless ad hoc networks.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.