Cart (Loading....) | Create Account
Close category search window

Dynamic fair scheduling with QoS constraints in multimedia wideband CDMA cellular networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Xu ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; Xuemin Shen ; Mark, Jon W.

A class of dynamic fair scheduling schemes based on the generalized processor sharing (GPS) fair service discipline, under the generic name code-division GPS (CDGPS), is proposed for a wideband direct-sequence code-division multiple-access (CDMA) cellular network to support multimedia traffic. The CDGPS scheduler makes use of both the traffic characteristics in the link layer and the adaptivity of the wideband CDMA physical layer to perform fair scheduling on a time-slot by time-slot basis, by using a dynamic rate-scheduling approach rather than the conventional time-scheduling approach. Soft uplink capacity is characterized for designing an efficient CDGPS resource allocation procedure. A credit-based CDGPS (C-CDGPS) scheme is proposed to further improve the utilization of the soft capacity by trading off the short-term fairness. Theoretical analysis shows that, with the C-CDGPS scheme, tight delay bounds can be provided to delay-sensitive traffic, and short-term unfairness can be bounded so that long-term weighted fairness for all users can still be satisfied. Simulation results show that bounded delays, increased throughput, and long-term fairness can be achieved for both homogeneous and heterogeneous traffic.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.