By Topic

Turbo space-time equalization of TCM for broadband wireless channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koca, M. ; Inst. de Recherche en Informatique et Syst.s Aleatoires, Rennes, France ; Levy, B.C.

This paper presents a space-time turbo (iterative) equalization method for trellis-coded modulation (TCM) signals over broadband wireless channels. For fixed wireless systems operating at high data rates, the multipath delay spread becomes large, making it impossible to apply trellis-based equalization methods. The equalizer proposed here consists of a broadband beamformer which processes antenna array measurements to shorten the observed channel impulse response, followed by a conventional scalar turbo equalizer. Since the applicability of trellis-based equalizers is limited to additive white noise channels, the beamformer is required to preserve the whiteness of the noise at its output. This constraint is equivalent to requiring that the finite-impulse response (FIR) beamforming filters must have a power complementarity property. The power complementarity property imposes nonnegative definite quadratic constraints on the beamforming filters, so the beamformer design is expressed as a constrained quadratic optimization problem. The composite channel impulse response at the beamformer output is shortened significantly, making it possible to use a turbo equalizer for the joint equalization and decoding of trellis modulated signals. The proposed receiver structure is simulated for two-dimensional TCM signals such as 8-PSK and 16-QAM and the results indicate that the use of antenna arrays with only two or three elements allows a large decrease in the channel signal-to-noise ratio needed to achieve a 10-4 bit-error rate.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:3 ,  Issue: 1 )