By Topic

Iterative inversion of neural networks and its application to adaptive control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
D. A. Hoskins ; Washington Univ., Seattle, WA, USA ; J. N. Hwang ; J. Vagners

An iterative constrained inversion technique is used to find the control inputs to the plant. That is, rather than training a controller network and placing this network directly in the feedback or feedforward paths, the forward model of the plant is learned, and iterative inversion is performed on line to generate control commands. The control approach allows the controllers to respond online to changes in the plant dynamics. This approach also attempts to avoid the difficulty of analysis introduced by most current neural network controllers, which place the highly nonlinear neural network directly in the feedback path. A neural network-based model reference adaptive controller is also proposed for systems having significant dynamics between the control inputs and the observed (or desired) outputs and is demonstrated on a simple linear control system. These results are interpreted in terms of the need for a dither signal for on-line identification of dynamic systems

Published in:

IEEE Transactions on Neural Networks  (Volume:3 ,  Issue: 2 )