By Topic

A machine learning method for generation of a neural network architecture: a continuous ID3 algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
K. J. Cios ; Dept. of Electr. Eng., Toledo Univ., OH, USA ; N. Liu

The relation between the decision trees generated by a machine learning algorithm and the hidden layers of a neural network is described. A continuous ID3 algorithm is proposed that converts decision trees into hidden layers. The algorithm allows self-generation of a feedforward neural network architecture. In addition, it allows interpretation of the knowledge embedded in the generated connections and weights. A fast simulated annealing strategy, known as Cauchy training, is incorporated into the algorithm to escape from local minima. The performance of the algorithm is analyzed on spiral data

Published in:

IEEE Transactions on Neural Networks  (Volume:3 ,  Issue: 2 )