By Topic

Global optimization of a neural network-hidden Markov model hybrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. Bengio ; Sch. of Comput. Sci., McGill Univ., Montreal, Que., Canada ; R. De Mori ; G. Flammia ; R. Kompe

The integration of multilayered and recurrent artificial neural networks (ANNs) with hidden Markov models (HMMs) is addressed. ANNs are suitable for approximating functions that compute new acoustic parameters, whereas HMMs have been proven successful at modeling the temporal structure of the speech signal. In the approach described, the ANN outputs constitute the sequence of observation vectors for the HMM. An algorithm is proposed for global optimization of all the parameters. Results on speaker-independent recognition experiments using this integrated ANN-HMM system on the TIMIT continuous speech database are reported

Published in:

IEEE Transactions on Neural Networks  (Volume:3 ,  Issue: 2 )