By Topic

Using random weights to train multilayer networks of hard-limiting units

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barlett, P.L. ; Dept. of Electr. Eng., Queensland Univ., St. Lucia, Qld., Australia ; Downs, T.

A gradient descent algorithm suitable for training multilayer feedforward networks of processing units with hard-limiting output functions is presented. The conventional backpropagation algorithm cannot be applied in this case because the required derivatives are not available. However, if the network weights are random variables with smooth distribution functions, the probability of a hard-limiting unit taking one of its two possible values is a continuously differentiable function. In the paper, this is used to develop an algorithm similar to backpropagation, but for the hard-limiting case. It is shown that the computational framework of this algorithm is similar to standard backpropagation, but there is an additional computational expense involved in the estimation of gradients. Upper bounds on this estimation penalty are given. Two examples which indicate that, when this algorithm is used to train networks of hard-limiting units, its performance is similar to that of conventional backpropagation applied to networks of units with sigmoidal characteristics are presented

Published in:

Neural Networks, IEEE Transactions on  (Volume:3 ,  Issue: 2 )