By Topic

A topology control algorithm for constructing power efficient wireless ad hoc networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Szu-Chi Wang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; Wei, D.S.L. ; Sy-Yen Kuo

In this paper, we present a localized algorithm for constructing power efficient topology for wireless ad hoc networks. Each mobile node determines its own transmission power based only on local information. The proposed algorithm first constructs the constrained Gabriel graph from the given unit disk graph and then reduces the total transmission power by allowing each node individually excises some replaceable links. The constructed topology is sparse, has a constant bounded power stretch factor, and the total transmission power is lower than those obtained from other proposed algorithms. In addition, compared with others, our algorithm requires lower time complexity to generate a solution, and can thus further save the energy for each mobile node. We demonstrate the performance improvements of our algorithm through simulations.

Published in:

Global Telecommunications Conference, 2003. GLOBECOM '03. IEEE  (Volume:3 )

Date of Conference:

1-5 Dec. 2003