Cart (Loading....) | Create Account
Close category search window
 

Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Imam, M. ; ON Semicond., Phoenix, AZ, USA ; Quddus, M. ; Adams, J. ; Hossain, Z.

A simple one-dimensional (1-D) analytical solution method for analyzing and determining the breakdown properties of reduced surface field (RESURF) lateral devices is presented. The solution demonstrates quantitatively and qualitatively the reshaping and reduction of the electric field and its dependence on the device/process key parameters. The solution is based on a simple and physical charge-sharing approach that takes into account the modulation of the lateral depletion layer spreading caused by the vertical depletion extension, and therefore transforms the inherent two-dimensional effects into a simple 1-D equivalent. It also provides a reasonable insight on the breakdown voltage sensitivity of lateral RESURF devices to key device/process parameters that other researchers failed to provide. Using the technique, device designers can set and choose the optimal processing window of the device's critical layers to yield high breakdown voltages. The results obtained using the proposed solution method agree well with the experimental and simulation results.

Published in:

Electron Devices, IEEE Transactions on  (Volume:51 ,  Issue: 1 )

Date of Publication:

Jan. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.