By Topic

A back-wafer contacted silicon-on-glass integrated bipolar process. Part I. The conflict electrical versus thermal isolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Nanver, L.K. ; Lab. of ECTM, Delft Univ. of Technol., Netherlands ; Nenadovic, N. ; d'Alessandro, V. ; Schellevis, H.
more authors

A novel silicon-on-glass integrated bipolar technology is presented. The transfer to glass is performed by gluing and subsequent removal of the bulk silicon to a buried oxide layer. Low-ohmic collector contacts are processed on the back-wafer by implantation and dopant activation by excimer laser annealing. The improved electrical isolation with reduced collector-base capacitance, collector resistance and substrate capacitance, also provide an extremely good thermal isolation. The devices are electrothermally characterized in relationship to different heat-spreader designs by electrical measurement and nematic liquid crystal imaging. Accurate values of the temperature at thermal breakdown and thermal resistance are extracted from current-controlled Gummel plot measurements.

Published in:

Electron Devices, IEEE Transactions on  (Volume:51 ,  Issue: 1 )