By Topic

Hot carrier analysis in low-temperature poly-Si TFTs using picosecond emission microscope

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Y. Uraoka ; Nara Inst. of Sci. & Technol., Japan ; N. Hirai ; H. Yano ; T. Hatayama
more authors

We have investigated the degradation of n-channel thin-film transistors under dynamic stress. Degradation was examined for various pulse parameters such as rising time or frequency. A shortfall time led to a large degradation. This mechanism was analyzed by using a picosecond emission microscope and a device simulator to examine the transient current, experimentally and theoretically, respectively. We have successfully detected emission at the pulse fall edge for the first time. Emission intensity increased with the decrease in pulse fall time. By means of the transient device simulation, transient current corresponding to the gate pulse was obtained. From the comparison between internal field and transient current, hot carrier current generated in the pulse fall was detected for the first time. A reasonable agreement between the data obtained by the emission microscope and those obtained by the device simulator clearly indicates that hot electrons are the dominant cause of degradation under dynamic stress. On the basis of the comparison between experimental and theoretical results, we proposed a model which takes into consideration electron traps in poly-Si.

Published in:

IEEE Transactions on Electron Devices  (Volume:51 ,  Issue: 1 )