Cart (Loading....) | Create Account
Close category search window
 

Optimizing p-type ultra-shallow junctions for the 65 nm CMOS technology node

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

The limits of using B or BF2 alone in forming ultrashallow junctions have been reached for the 90 nm CMOS generation. In this paper we evaluate the use of Ge and F co-implants to extend conventional implantation and spike anneal to the 65 nm CMOS technology node. In this work we show that the F co-implant can improve the abruptness of the B junction, while the single Ge usually degrades it. The use of Ge co-implanted with F gives the best junction abruptness - less than 5nm/decade. The best trade-off between junction depth (Xj) and sheet resistance (Rsheet) is achieved by deep Ge pre-amorphization and deep co-implantation of F. A comparison between slow and fast ramp-up is made. Significant improvement for the junction activation, its depth and abruptness is obtained by spike anneal with fast ramp-up for B junctions with Ge and F co-implantation.

Published in:

Ion Implantation Technology. 2002. Proceedings of the 14th International Conference on

Date of Conference:

27-27 Sept. 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.