By Topic

Robust combination of neural networks and hidden Markov models for speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Acoustic modeling in state-of-the-art speech recognition systems usually relies on hidden Markov models (HMMs) with Gaussian emission densities. HMMs suffer from intrinsic limitations, mainly due to their arbitrary parametric assumption. Artificial neural networks (ANNs) appear to be a promising alternative in this respect, but they historically failed as a general solution to the acoustic modeling problem. This paper introduces algorithms based on a gradient-ascent technique for global training of a hybrid ANN/HMM system, in which the ANN is trained for estimating the emission probabilities of the states of the HMM. The approach is related to the major hybrid systems proposed by Bourlard and Morgan and by Bengio, with the aim of combining their benefits within a unified framework and to overcome their limitations. Several viable solutions to the "divergence problem"-that may arise when training is accomplished over the maximum-likelihood (ML) criterion-are proposed. Experimental results in speaker-independent, continuous speech recognition over Italian digit-strings validate the novel hybrid framework, allowing for improved recognition performance over HMMs with mixtures of Gaussian components, as well as over Bourlard and Morgan's paradigm. In particular, it is shown that the maximum a posteriori (MAP) version of the algorithm yields a 46.34% relative word error rate reduction with respect to standard HMMs.

Published in:

Neural Networks, IEEE Transactions on  (Volume:14 ,  Issue: 6 )