By Topic

Bayesian multichannel image restoration using compound Gauss-Markov random fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Molina, R. ; Dept. de Ciencias de la Computacion e I.A., Univ. de Granada, Spain ; Mateos, J. ; Katsaggelos, A.K. ; Vega, M.

We develop a multichannel image restoration algorithm using compound Gauss-Markov random fields (CGMRF) models. The line process in the CGMRF allows the channels to share important information regarding the objects present in the scene. In order to estimate the underlying multichannel image, two new iterative algorithms are presented and their convergence is established. They can be considered as extensions of the classical simulated annealing and iterative conditional methods. Experimental results with color images demonstrate the effectiveness of the proposed approaches.

Published in:

Image Processing, IEEE Transactions on  (Volume:12 ,  Issue: 12 )