By Topic

Lifting-based invertible motion adaptive transform (LIMAT) framework for highly scalable video compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Secker ; Sch. of Electr. Eng., Univ. of New South Wales, Sydney, NSW, Australia ; D. Taubman

We propose a new framework for highly scalable video compression, using a lifting-based invertible motion adaptive transform (LIMAT). We use motion-compensated lifting steps to implement the temporal wavelet transform, which preserves invertibility, regardless of the motion model. By contrast, the invertibility requirement has restricted previous approaches to either block-based or global motion compensation. We show that the proposed framework effectively applies the temporal wavelet transform along a set of motion trajectories. An implementation demonstrates high coding gain from a finely embedded, scalable compressed bit-stream. Results also demonstrate the effectiveness of temporal wavelet kernels other than the simple Haar, and the benefits of complex motion modeling, using a deformable triangular mesh. These advances are either incompatible or difficult to achieve with previously proposed strategies for scalable video compression. Video sequences reconstructed at reduced frame-rates, from subsets of the compressed bit-stream, demonstrate the visually pleasing properties expected from low-pass filtering along the motion trajectories. The paper also describes a compact representation for the motion parameters, having motion overhead comparable to that of motion-compensated predictive coders. Our experimental results compare favorably to others reported in the literature, however, our principal objective is to motivate a new framework for highly scalable video compression.

Published in:

IEEE Transactions on Image Processing  (Volume:12 ,  Issue: 12 )