Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Baseband impedance and linearization of FET circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brinkhoff, J. ; Dept. of Electron., Macquarie Univ., Sydney, NSW, Australia ; Parker, A.E. ; Leung, M.

Baseband impedance has been identified as having a positive or negative effect on the intermodulation distortion of microwave circuits. The effect can be assessed or utilized with the aid of previously proposed figures-of-merit. Under certain situations, intermodulation cancellation can be achieved simply by adding resistance to the bias network. The impact of baseband impedance on the performance of derivative superposition amplifiers is analyzed. A bias region was studied that exhibits a good second- and third-order intermodulation with minimal intermodulation dependence on baseband impedance. This allows the effective use of the derivative superposition technique in baseband amplifiers, as well as giving wide-band linearization performance in RF amplifiers.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 12 )