By Topic

A V-band quasi-optical GaAs HEMT monolithic integrated antenna and receiver front end

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I-Jen Chen ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taiwan ; Huei Wang ; Powen Hsu

A single-chip monolithic integrated V-band folded-slot antenna with two Schottky-barrier diodes and a local oscillator source is developed as a quasi-optical receiver for the first time. The monolithic microwave integrated circuit consists of a voltage-controlled oscillator (VCO), a coplanar waveguide (CPW)-to-slotline transition, a low-pass filter, a folded-slot antenna, and a 180° single balanced mixer. The chip is fabricated based on the 0.15-μm GaAs high electron-mobility transistor technology and the overall chip size is 3×1.5 mm2. A finite-difference time-domain method solver is also developed for analyzing the embedded impedance characteristics of the folded-slot antenna to design the mixer. The chip is placed on an extended hemispherical silicon substrate lens to be a quasi-optical receiver. The performance of the receiver is verified by experimental measurements. The VCO has achieved a tuning range from 61.9 to 62.5 GHz and approximately 9.3-dBm output power. The CPW-to-slotline transition has bandwidth from 50 to 70 GHz. The mixer results in 15-dB single-sideband conversion loss and the receiving patterns of the IF power are also measured.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 12 )