By Topic

An efficient electromagnetic-physics-based numerical technique for modeling and optimization of high-frequency multifinger transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hussein, Y.A. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ, USA ; El-Ghazaly, S.M. ; Goodnick, S.M.

We present a fast wavelet-based time-domain modeling technique to study the effect of electromagnetic (EM)-wave propagation on the performance of high-power and high-frequency multifinger transistors. The proposed approach solves the active device model that combines the transport physics, and Maxwell's equations on nonuniform self-adaptive grids, obtained by applying wavelet transforms followed by hard thresholding. This allows forming fine and coarse grids in the locations where variable solutions change rapidly and slowly, respectively. A CPU time reduction of 75% is achieved compared to a uniform-grid case, while maintaining the same degree of accuracy. After validation, the potential of the developed technique is demonstrated by EM-physical modeling of multifinger transistors. Different numerical examples are presented, showing that accurate modeling of high-frequency devices should incorporate the effect of EM-wave propagation and electron-wave interactions within and around the device. Moreover, high-frequency advantages of multifinger transistors over single-finger transistors are underlined through numerical examples. To our knowledge, this is the first time in the literature a fully numerical EM-physics-based simulator for accurate modeling of high-frequency multifinger transistors is introduced and implemented.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:51 ,  Issue: 12 )