By Topic

Performance and design of space-time coding in fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinhong Yuan ; Sch. of Electr. Eng. & Telecommun., New South Wales Univ., NSW, Australia ; Zhuo Chen ; Vucetic, B. ; Firmanto, W.

The pairwise-error probability upper bounds of space-time codes (STCs) in independent Rician fading channels are derived. Based on the performance analysis, novel code design criteria for slow and fast Rayleigh fading channels are developed. It is found that, in fading channels, the STC design criteria depend on the value of the possible diversity gain of the system. In slow fading channels, when the diversity gain is smaller than four, the code error performance is dominated by the minimum rank and the minimum determinant of the codeword distance matrix. However, when the diversity gain is larger than, or equal to, four, the performance is dominated by the minimum squared Euclidean distance. Based on the proposed design criteria, new codes are designed and evaluated by simulation.

Published in:

Communications, IEEE Transactions on  (Volume:51 ,  Issue: 12 )