By Topic

Wide dynamic range Doppler-shift compensation for space-borne optical communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. B. Svec ; New Mexico State Univ., Albuquerque, NM, USA ; T. M. Shay

We model and demonstrate a novel concept for the Doppler-shift compensation of optical transmitters. Optical frequency offset locking is demonstrated using a simple Fabry-Perot laser diode transmitter and a frequency-lock loop. Our system simultaneously demonstrates a continuous tracking range of 21 GHz and a tracking speed of 44 THz/s. The transmitter frequency is adjusted over the entire 21-GHz range by merely adjusting the frequency of a microwave oscillator.

Published in:

IEEE Photonics Technology Letters  (Volume:16 ,  Issue: 1 )