Cart (Loading....) | Create Account
Close category search window

Array regrouping and its use in compiling data-intensive, embedded applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De La Luz, V. ; Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA ; Kandemir, M.

One of the key challenges facing computer architects and compiler writers is the increasing discrepancy between processor cycle times and main memory access times. To alleviate this problem in array-intensive embedded signal and video processing applications, compilers may employ either control-centric transformations that change data access patterns of nested loops or data-centric transformations that modify memory layouts of multidimensional arrays. Most of the memory layout optimizations proposed so far either modify the layout of each array independently or are based on explicit data reorganizations at runtime. We focus on a compiler technique, called array regrouping, that automatically maps multiple arrays into a single data (array) space to improve data access pattern. We present a mathematical framework that enables us to systematically derive suitable mappings for a given array-intensive embedded application. The framework divides the arrays accessed in a given program into several groups and each group is independently layout-transformed to improve spatial locality and reduce the number of conflict misses. As compared to the previous approaches, the proposed technique makes two new contributions: 1) It presents a graph based formulation of the array regrouping problem and 2) it demonstrates potential benefits of this aggressive array-regrouping strategy in optimizing behavior of embedded systems. Extensive experimental results demonstrate significant improvements in cache miss rates and execution times. An important advantage of this approach over the previous techniques that target conflict misses is that it reduces conflict misses without increasing the data space requirements of the application being optimized. This is a very desirable property in many embedded/portable environments where data space requirements determine the minimum physical memory capacity. In addition to performance related issues, with the increased use of embedded/portable devices, improving energy efficiency of applications is becoming a critical issue. To develop a truly energy-efficient system, energy constraints should be taken into account early in the design process, i.e., at the source level in software compilation and behavioral level in hardware compilation. Source-- level optimizations are particularly important in data-dominated media applications. We also show how our array regrouping strategy increases energy savings from using multiple low-power operating modes provided in current memory modules. Using a set of array-intensive benchmarks, we observe significant savings in memory system energy.

Published in:

Computers, IEEE Transactions on  (Volume:53 ,  Issue: 1 )

Date of Publication:

Jan 2004

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.