By Topic

Improved methods for divisible load distribution on k-dimensional meshes using pipelined communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
K. Li ; Dept. of Comput. Sci., State Univ. of New York, New Paltz, NY, USA

We give the closed form solutions to the parallel time and speedup of the classic method for processing divisible loads on linear arrays as functions of N, the network size. We propose two methods which employ pipelined communications to distribute divisible loads on linear arrays. We derive the closed form solutions to the parallel time and speedup for both methods and show that the asymptotic speedup of both methods is β+1, where β is the ratio of the time for computing a unit toad to the time for communicating a unit load. Such performance is even better than that of the known methods on k-dimensional meshes with k>1. The two new algorithms which use pipelined communications are generalized to distribute divisible loads on k-dimensional meshes, and we show that the asymptotic speedup of both algorithms is kβ+1, where k≥1. We also prove that, on k-dimensional meshes where k≥1, as the network size becomes large, the asymptotic speedup of 2kβ+1 can be achieved for processing divisible loads by using interior initial processors.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:14 ,  Issue: 12 )