By Topic

Shared memory multiprocessor architectures for software IP routers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Luo ; Dept. of Comput. Sci. & Eng., California Univ., Riverside, CA, USA ; Laxmi Narayan Bhuyan ; X. Chen

We propose new shared memory multiprocessor architectures and evaluate their performance for future Internet protocol (IP) routers based on symmetric multiprocessor (SMP) and cache coherent nonuniform memory access (CC-NUMA) paradigms. We also propose a benchmark application suite, RouterBench, which consists of four categories of applications representing key functions on the time-critical path of packet processing in routers. An execution driven simulation environment is created to evaluate SMP and CC-NUMA router architectures using this RouterBench. The execution driven simulation can produce accurate cycle-level execution time prediction and reveal the impact of various architectural parameters on the performance of routers. We port the FUNET trace and its routing table for use in our experiments. We find that the CC-NUMA architecture provides an excellent scalability for design of high-performance IP routers. Results also show that the CC-NUMA architecture can sustain good lookup performance, even at a high frequency of route updates.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:14 ,  Issue: 12 )