Cart (Loading....) | Create Account
Close category search window

Noise model of gate-leakage current in ultrathin oxide MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, J. ; Dept. of Electr. & Comput. Eng., Florida Univ., Gainesville, FL, USA ; Bosman, Gijs ; Green, K.R. ; Ladwig, D.

A physics-based analytical model of the gate-leakage current noise in ultrathin gate oxide MOSFETs is presented. The noise model is based on an inelastic trap-assisted tunneling transport. We employ the barrier height fluctuation model and the Lorentzian-modulated shot noise of the gate-leakage current stemming from the two-dimensional electron gas channel to explain the excess noise behavior. The excess noise can be interpreted as the sum of 1/fγ noise and the Lorentzian-modulated shot noise. Trap-related processes are the most likely cause of excess current noise because slow traps in the oxide can result in low-frequency dissipation in the conductance of oxides and fast traps can produce the Lorentzian-modulated shot noise associated with generation-recombination process at higher frequencies. In order to verify the proposed noise model, the simulation results are compared with experimental data, and excellent agreement is observed.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.