By Topic

Impact of lateral asymmetric channel doping on deep submicrometer mixed-signal device and circuit performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Narasimhulu, K. ; Dept. of Electr. Eng., Indian Inst. of Technol., Mumbai, India ; Sharma, D.K. ; Ramgopal Rao, V.

In this paper, we have systematically investigated the effect of scaling on analog performance parameters in lateral asymmetric channel (LAC) MOSFETs and compared their performance with conventional (CON) MOSFETs for mixed-signal applications. Our results show that, in LAC MOSFETs, there is significant improvement in the intrinsic device performance for analog applications (such as device gain, gm/ID etc.) down to the 70-nm technology node, in addition to an improvement in drive current and other parameters over a wide range of channel lengths. A systematic comparison on the performance of amplifiers and CMOS inverters with CON and LAC MOSFETs is also performed. The tradeoff between power dissipation and device performance is explored with detailed circuit simulations for both CON and LAC MOSFETs.

Published in:

Electron Devices, IEEE Transactions on  (Volume:50 ,  Issue: 12 )