Cart (Loading....) | Create Account
Close category search window
 

Capacity of a mobile multiple-antenna wireless link with isotropically random Rician fading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Godavarti, Mahesh ; Ditech Commun. Inc., Mountain View, CA, USA ; Marzetta, T.L. ; Shamai, S.

We analyze the capacity of a multiple-antenna wireless link with M antennas at the transmitter and N antennas at the receiver in a Rician fading channel when the channel is unknown at both the transmitter and the receiver. The Rician model is a nonstandard model with a Rayleigh component and an isotropically random rank-one specular component. The Rayleigh and specular components remain constant for T symbol periods, after which they change to completely independent realizations, and so on. To maximize mutual information over the joint density of T·M complex transmitted signals it is sufficient to maximize over a joint density of min{T,M} real transmitted signal magnitudes. The capacity-achieving signal matrix is equal to the product of two independent matrices, a T×T isotropically random unitary matrix and a T×M real nonnegative diagonal matrix. If M>T, optimum signaling uses only T out of the M transmit antennas. We derive a novel lower bound on capacity which enables us to compute achievable rate regions for many cases. This lower bound is also valid for the case of purely Rayleigh-fading channels, where it has not been feasible, in general, to compute capacity, or mutual information. Our numerical results also indicate that the Rayleigh model is surprisingly robust: under our Rician model, up to half of the received energy can arrive via the specular component without significant reduction in capacity compared with the purely Rayleigh case.

Published in:

Information Theory, IEEE Transactions on  (Volume:49 ,  Issue: 12 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.