By Topic

A high-temperature superconducting Butler matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Corona ; Electr. Eng. Dept., Univ. of Birmingham, UK ; M. J. Lancaster

This paper presents a novel configuration of a beamforming 16-port Butler matrix centered on a frequency of 2 GHz. The structure is implemented using high-temperature superconductors (HTS). In communication and remote sensing systems, multibeam antenna systems are gradually replacing single-beam systems. Microwave beamformer circuits for these applications require a large number of couplers and phase shifters, which result in a large circuit size. By using microstrip structures on high permittivity substrates, the circuits can be miniaturized. However, the insertion loss of the beamformer increases due to the conductor loss. The use of HTS allows reduction in the size of the circuit while maintaining low insertion loss, due to the low conductor loss compared to conventional conductors. The Butler matrix described here uses a two-layer configuration, which removes any microstrip line crossovers; it can be constructed by traditional photolithographic methods. In this paper, the design of the matrix is discussed, together with the experimental and simulated results.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:13 ,  Issue: 4 )