By Topic

Ultra-low-power DLMS adaptive filter for hearing aid applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim, C.H. ; Electr. & Comput. Eng. Dept., Purdue Univ., West Lafayette, IN, USA ; Soeleman, H. ; Roy, K.

We present an ultra-low-power, delayed least mean square (DLMS) adaptive filter operating in the subthreshold region for hearing aid applications. Subthreshold operation was accomplished by using a parallel architecture with pseudo nMOS logic style. The parallel architecture enabled us to operate the system at a lower clock rate and reduced supply voltage while maintaining the same throughput. Pseudo nMOS logic operating in the subthreshold region (subpseudo nMOS) provided better power-delay product than subthreshold CMOS (sub-CMOS) logic. Simulation results show that the DLMS adaptive filter can operate at 22 kHz using a 400-mV supply voltage to achieve 91% improvement in power compared to a nonparallel, CMOS implementation. To validate the robust operation of subthreshold logics, a 0.35 /spl mu/m, 23.1 kHz, 21.4 nW, 8/spl times/8 carry save array multiplier test chip was fabricated where an adaptive body biasing scheme is used for compensating process, supply and temperature variations. The test chip showed stable operation at a supply voltage of 0.30 V, which is even lower than the threshold voltages of the pMOS (0.82 V) and nMOS (0.67 V) transistors.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 6 )