By Topic

Instruction level and operating system profiling for energy exposed software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sinha, A. ; Electr. Eng. & Comput. Sci. Dept., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Ickes, N. ; Chandrakasan, A.P.

Energy conscious software design can significantly improve the energy efficiency of a portable system. A software energy estimation technique using instruction class profiling is presented. The technique is shown to have an estimation error of less than 3% with trivial runtime overhead, based on a set of application programs evaluated on the StrongARM SA-1100 and Hitachi SH-4 microprocessors. A technique to isolate the switching and leakage energy components of software is outlined. The energy overhead of a real-time operating system is also profiled. The overall impact of system-level software energy management is quantified using the MIT /spl mu/AMPS system as an application example.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:11 ,  Issue: 6 )