By Topic

Microphone array post-filter based on noise field coherence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
McCowan, I.A. ; Dalle Molle Inst. for Perceptual Artificial Intelligence, Martigny, Switzerland ; Bourlard, H.

This paper introduces a novel technique for estimating the signal power spectral density to be used in the transfer function of a microphone array post-filter. The technique is a generalization of the existing Zelinski post-filter, which uses the auto- and cross-spectral densities of the array inputs to estimate the signal and noise spectral densities. The Zelinski technique, however, assumes zero cross-correlation between the noise on different sensors. This assumption is inaccurate, particularly at low frequencies and for arrays with closely spaced sensors, and thus the corresponding post-filter is suboptimal in realistic noise conditions. In this paper, a more general expression of the post-filter estimation is developed based on an assumed knowledge of the complex coherence of the noise field. This general expression can be used to construct a more appropriate post-filter in a variety of different noise fields. In experiments using real noise recordings from a computer office, the modified post-filter results in significant improvement in terms of objective speech quality measures and speech recognition performance using a diffuse noise model.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:11 ,  Issue: 6 )