By Topic

Analytic models for the latency and steady-state throughput of TCP Tahoe, Reno, and SACK

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sikdar, B. ; Dept. of Electr., Rensselaer Polytech. Inst., Troy, NY, USA ; Kalyanaraman, S. ; Vastola, K.S.

Continuing the process of improvements made to TCP through the addition of new algorithms in Tahoe and Reno, TCP SACK aims to provide robustness to TCP in the presence of multiple losses from the same window. In this paper we present analytic models to estimate the latency and steady-state throughput of TCP Tahoe, Reno, and SACK and validate our models using both simulations and TCP traces collected from the Internet. In addition to being the first models for the latency of finite Tahoe and SACK flows, our model for the latency of TCP Reno gives a more accurate estimation of the transfer times than existing models. The improved accuracy is partly due to a more accurate modeling of the timeouts, evolution of cwnd during slow start and the delayed ACK timer. Our models also show that, under the losses introduced by the droptail queues which dominate most routers in the Internet, current implementations of SACK can fail to provide adequate protection against timeouts and a loss of roughly more than half the packets in a round will lead to timeouts. We also show that with independent losses SACK performs better than Tahoe and Reno and, as losses become correlated, Tahoe can outperform both Reno and SACK.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 6 )