Cart (Loading....) | Create Account
Close category search window
 

Modeling multiple IP traffic streams with rate limits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We start with the premise, and provide evidence that it is valid, that a Markov-modulated Poisson process (MMPP) is a good model for Internet traffic at the packet/byte level. We present an algorithm to estimate the parameters and size of a discrete MMPP (D-MMPP) from a data trace. This algorithm requires only two passes through the data. In tandem-network queueing models, the input to a downstream queue is the output from an upstream queue, so the arrival rate is limited by the rate of the upstream queue. We show how to modify the MMPP describing the arrivals to the upstream queue to approximate this effect. To extend this idea to networks that are not tandem, we show how to approximate the superposition of MMPPs without encountering the state-space explosion that occurs in exact computations. Numerical examples that demonstrate the accuracy of these methods are given. We also present a method to convert our estimated D-MMPP to a continuous-time MMPP, which is used as the arrival process in a matrix-analytic queueing model.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:11 ,  Issue: 6 )

Date of Publication:

Dec. 2003

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.