By Topic

Vibration control of linear robots using a piezoelectric actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chang, T.N. ; Electr. & Comput. Eng. Dept., New Jersey Inst. of Technol., Newark, NJ, USA ; Kwadzogah, R. ; Caudill, R.J.

This paper presents the results of vibration control strategy for high-speed linear robots using an auxiliary piezoelectric actuator. With acceleration reaching 3 g, rapid horizontal slewing motion inevitably excites the structural resonances of the robot and generates vertical vibration forces exceeding the tolerance of the end-effector. Instead of controlling the robot vibration from the main actuators (ac servomotors with limited bandwidth), a piezoelectric actuator is deployed to provide vibration suppression at the load in the z direction. This way the robot is treated as a disturbance generator while the piezoactuator is considered as the plant. A digital servocompensator is then designed and implemented to suppress these vibration modes. Typically, attenuation is achieved for the dominant mode with 30 dB and other modes with 15 dB. Suppression of vibration up to seven modes has been implemented satisfactorily.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:8 ,  Issue: 4 )