By Topic

Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. R. Cano ; Dept. of Electron. Eng., Univ. of Huelva, Spain ; F. Herrera ; M. Lozano

Evolutionary algorithms are adaptive methods based on natural evolution that may be used for search and optimization. As data reduction in knowledge discovery in databases (KDDs) can be viewed as a search problem, it could be solved using evolutionary algorithms (EAs). In this paper, we have carried out an empirical study of the performance of four representative EA models in which we have taken into account two different instance selection perspectives, the prototype selection and the training set selection for data reduction in KDD. This paper includes a comparison between these algorithms and other nonevolutionary instance selection algorithms. The results show that the evolutionary instance selection algorithms consistently outperform the nonevolutionary ones, the main advantages being: better instance reduction rates, higher classification accuracy, and models that are easier to interpret.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:7 ,  Issue: 6 )