By Topic

Multilayer power printed structures suitable for controlling EMI noises generated in power converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mutoh, N. ; Fac. of Eng., Metropolitan Inst. of Technol., Tokyo, Japan ; Nakashima, J. ; Kanesaki, M.

Electromagnetic interference (EMI) noises generated in power converters are diffused on the surface of conductors. This means influences occur from radiated EMI noises emitted from power transmission lines as well as conducted EMI noises transmitted from them. EMI noises diffusing on the surface of conductors are generally difficult to control using conventional concentrated constant theory. Thus, a new approach based on distributed constant circuit theory is needed in order to control EMI noises. A power converter structure to control EMI noises using multilayer power printed circuit technology is studied in this paper. A structure which can control EMI noises should simultaneously satisfy two conditions, i.e., one to shut down and one to attenuate EMI noises. The structure satisfying these conditions is studied through simulations using the Transmission-Line Modeling Method. The simulations show that the diffusion of EMI noises is controlled by dividing the flow of currents produced by EMI noises into the horizontal and perpendicular directions. That is, the horizontal current flow is controlled inside using the differences in the resistance produced from differences between inner and outer diameter of power transmission lines and the perpendicular current flow can be controlled by properly designing the thickness of the dielectric layer sandwiched between P-and N-power transmission lines with the symmetrical structure. Moreover, it is confirmed by simulations and experiments that the attenuation of EMI noises is affected by the width of the power transmission lines. It is expected that the results obtained in this paper can provide important rules when designing power converters with EMI noise control functions which use the multilayer power printed circuit technology.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:50 ,  Issue: 6 )