Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Dynamic-Grouping bandwidth reservation scheme for multimedia wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jau-Yang Chang ; Dept. of Electron. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Hsing-Lung Chen

In wireless networks carrying multimedia traffic (voice, video, data, and image), it becomes necessary to provide a quality-of-service(QoS) guarantee for multimedia traffic connections supported by the network. In order to provide mobile hosts with high QoS in the next-generation wireless networks, efficient and better bandwidth reservation schemes must be designed. This paper presents a novel dynamic-grouping bandwidth reservation scheme as a solution to support QoS guarantees in the next-generation wireless networks. The proposed scheme is based on the probabilistic resource estimation to provide QoS guarantees for multimedia traffic in wireless cellular networks. We establish several reservation time sections, called groups, according to the mobility information of mobile hosts of each base station. The amount of reserved bandwidth for each base station is dynamically adjusted for each reservation group. We use the dynamic-grouping bandwidth reservation scheme to reduce the connection blocking rate and connection dropping rate, while increasing the bandwidth utilization. The simulation results show that the dynamic-grouping bandwidth reservation scheme provides less connection-blocking rate and less connection-dropping rate and achieves high bandwidth utilization.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:21 ,  Issue: 10 )