By Topic

Adaptive learning algorithms for Nernst potential and I-V curves in nerve cell membrane ion channels modeled as hidden Markov models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. Krishnamurthy ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Shin-Ho Chung

We present discrete stochastic optimization algorithms that adaptively learn the Nernst potential in membrane ion channels. The proposed algorithms dynamically control both the ion channel experiment and the resulting hidden Markov model signal processor and can adapt to time-varying behavior of ion channels. One of the most important properties of the proposed algorithms is their its self-learning capability-they spend most of the computational effort at the global optimizer (Nernst potential). Numerical examples illustrate the performance of the algorithms on computer-generated synthetic data.

Published in:

IEEE Transactions on NanoBioscience  (Volume:2 ,  Issue: 4 )